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Phases can be determined for geometrically redundant amplitudes by iteration of the following proce- 
dure: compute an electron density map from the currently a,~ailable phases; average the electron 
densities of all the crystallographically independent molecules; rebuild the crystal(s) from this averaged 
subunit, setting the density outside the molecular boundaries to its average value; obtain phase in- 
formation from the resulting structure, and combine it with that given by isomorphous replacement to 
produce the phases to be used in the next iteration. This algorithm converges very rapidly, and has 
proved to be a powerful tool in the solution of two large unknown protein structures. This paper 
describes the computational techniques developed to implement it, which include a swift and general 
method for real-space averaging of electron density maps. 

Introduction 

Proteins frequently crystallize with several identical 
subunits in the asymmetric unit, or in several crystal 
forms which contain the same molecule in different 
arrangements. Rossmann & Blow (1963) recognized 
that intensity data collected from such structures are 
redundant, and that their redundancy could be a 
source of phase information. A variety of techniques 
have been developed to implement these ideas, which 
have become known collectively under the broad 
designation of the 'molecular replacement method' 
(Rossmann, 1972). This paper will be concerned almost 
exclusively with the last stage of this method, namely 
the generation of phase information once the geome- 
trical transformations relating the independent sub- 
units have been determined. 

The phase constraints implied by the consistency of 
geometrically redundant intensities were first derived 
by Rossmann & Blow (1963), and generalized by 
Main & Rossmann (1966). Crowther (1967, 1969) re- 
formulated them as linear eigenvalue equations between 
structure factors. On this basis, he proposed the first 
practical procedure to solve them: the iterative 'H- 
matrix method', which was used by Jack (1973) to 
determine 840 signs for a 17-fold symmetric projection 
of TMV coat protein discs (the abbreviations used in 
this paper are listed in Table 1). However, any such 
reciprocal-space method was bound to generate 
amounts of computation proportional to N z for N 
independent reflexions. This limited their usefulness 
quite severely, and N could not exceed a few thousands 
(see Jack, 1972, 1973). 

In a previous paper [Bricogne (1974), hereafter 
referred to as (I)], the theory was reformulated in real 
space, and the equations obtained were proved to be 
equivalent to the most general molecular-replacement 
equations previously derived in reciprocal space, as 
had been suggested by Main (1967) and Rossmann 
(1972). This showed that the most costly step in 

MRM 
I.R. 
SIR 
DIR 
MIR 
EM 
a . u .  

n.c.s. 
r.m.s. 
e.d. 
B. St. 
GPD 
TMV 
TBSV 
SBMV 

Table 1. List of  abbreviations used 

molecular replacement method 
isomorphous replacement 
single isomorphous replacement 
double isomorphous replacement 
multiple isomorphous replacement 
electron microscopy 
asymmetric unit 
non-crystallographic symmetry 
root mean square 
electron density 
Bacillus stearothermophilus 
D-glyceraldehyde-3-phosphate dehydrogenase 
tobacco mosaic virus 
tomato bushy stunt virus 
southern bean mosaic virus 

Crowther's procedure could be carried out much more 
economically by the following set of operations in 
real space: average the electron densities of all crys- 
tallographically independent subunits; rebuild the 
crystals from this averaged subunit, setting the density 
outside the molecular boundaries to its average value; 
the resulting structure can then be used to obtain 
phase information. This involves amounts of computa- 
tion proportional only to N. 

The averaging of independent copies of the same 
molecule has been frequently used to improve e.d. maps 
(Birktoft & Blow, 1972; Muirhead, Cox, Mazzarella & 
Perutz, 1967; Buehner, Ford, Moras, Olsen & Ross- 
mann, 1974). However, early attempts to derive phase 
information from the averaged maps remained incon- 
clusive (Muirhead et al., 1967). This was probably 
because only two independent molecules were avail- 
able. Recent work has been more successful. Harrison 
& Jack (1975) have used real-space averaging to im- 
prove some 1300 phases for an icosahedral virus. In a 
low-resolution study on a known protein structure, 
Argos, Ford & Rossmann (1975) showed that the 
same method, if provided with a high-resolution mo- 
lecular envelope, could extend 6-0 .& SIR phases to 
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4.9 A resolution, or even generate phases ab initio; 
although the errors were rather large, the phases 
obtained were good enough to locate heavy atoms in 
isomorphous derivatives. However, serious comput- 
ational difficulties were encountered when more than 
about 7000 reflexions had to be handled, even with a 
rather coarse (2 A) sampling of the e.d. maps; the 
method was concluded to be still 'beyond reasonable 
computer limits at high resolution'. 

In this paper, I describe a set of computational 
techniques which have been used to solve the phase 
problem for two unknown protein structures by a 
combined use of isomorphous replacement and non- 
crystallographic symmetry. The main emphasis has 
been put on the possibility of coping with large pro- 
blems. Indeed, the two structures mentioned (GPD 
from B . S t .  and the disc of TMV coat protein) are 
among the very largest phased to this date, in terms of 
the amount of data involved (42 000 and 38 000 
independent reflexions respectively). A general and 
efficient system for averaging densities at points related 
by n.c.s., and for reconstructing the e.d. for an averaged 
crystal, has been devised to operate on maps which 
may contain up to 10 7 points or more. This method is 
based on a double-sorting technique. The averaged 
structure is then used as a 'known part' in the sense 
of Sim (1959) to introduce symmetry-based phase in- 
formation into the weighting scheme proposed by 
Blow & Crick (1959) for I.R. data. The phase probabi- 
lity density generated for each reflexion by Sim's 
formula is combined with any previously available 
phase information, to give the best phase and figure 
of merit used in the next iteration. This algorithm 
converges very rapidly (typically, in two or three 
cycles). 

After presenting the programming techniques used, 
I shall discuss some general principles of their practical 
implementation. An account of their use for structure 
determination may be found in the recent paper of 
Champness, Bloomer, Bricogne, Butler & Klug (1976) 
on the structure of TMV protein.* 

1. Survey of program requirements 

Geometric redundancies will very seldom be able to 
generate phases by themselves. I shall examine later 
the question of the minimum phase information which 
may provide an adequate starting point. 

For the moment, let us consider as an example the 
case of a structure for which we have incomplete 
phase information (such as might be given by a single 
isomorphous derivative) but whose asymmetric unit 
contains n copies of molecule M, related by known 
local symmetry. The solution of this structure is per- 
formed in outline as follows: 

* Note added in proof: these programs have now been used 
to solve the structure of TBSV to 5.5 A resolution, in col- 
laboration with Dr S. C. Harrison. 

(1) Encode the preliminary phase information given 
by I.R. 

(2) Define the envelope of the basic aggregate of n 
molecules. 

(3) Iterate the following procedure: (a) compute an 
e.d. map from the observed moduli and the current 
phases and figures of merit; (b) average the n inde- 
pendent copies of M, calculate the average density in 
solvent regions; (c) rebuild the asymmetric unit from 
this averaged aggregate, set solvent density to its 
average value; (d) compute structure factors from 
this e.d. map; (e) combine the (single isomorphous) 
phase information with the information derived from 
the calculated structure factors by the use of Sim's 
formula; obtain new phases and figures of merit. 

Fast Fourier transform programs (Ten Eyck, 1973) 
are used in steps 3(a) and 3(d). I shall now describe 
the methods used in the other steps. 

2. Definition of molecular envelopes 

The molecular boundaries are determined by cal- 
culating an e.d. map with the initially available phases, 
and averaging it by the local symmetry elements of a 
particular molecular aggregate. Because of the local 
character of this symmetry, the chosen aggregate is 
preserved by the averaging, whereas the neighbouring 
ones are smeared. Comparing the unaveraged and 
averaged maps usually gives a good idea of the 
boundaries of the aggregate (Muirhead et al., 1967; 
Buehner et al., 1974). 

To define them in a form usable by a computer, 
previous workers used to write down, for each line 
of the grid on which the map had been averaged, the 
coordinates of the end points of those segments 
belonging to the envelope. 

I chose to take advantage of a tracing system 
developed in this laboratory by Dr J. White for the 
study of nematode neuroanatomy. The envelope is 
traced section by section onto a graphical input tablet 
linked to a Modular One computer. Each profile is 
coded as a string of pen movements in eight possible 
directions on a 256 × 256 grid. This type of descrip- 
tion is very compact indeed, but for our purposes a 
representation by arrays of logical variables was more 
convenient. A processing program was written in 
IBM Fortran IV to carry out this conversion, produc- 
ing consecutive sections of the envelope as arrays of 
'l-byte integers'; this allows for the necessity of 
labelling the envelopes of the various subunits when 
dealing with improper local symmetries (see § 3.3). To 
keep all the sections in register, three fiducial marks 
are used: the grid on which the array is to be produced 
is defined by specifying the grid coordinates corres- 
ponding to these marks. 

The e.d. handling system described below can be 
used to 'move' envelopes between different grids (see 
§ 3.5). The problem of the overlap of neighbouring 
envelopes will be dealt with at that stage. 

A C 3 2 A  - 6* 
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3. Handling of electron densities 

The averaging and rebuilding operations of steps 3(b) 
and 3(c) pose serious computational problems as soon 
as the initial map becomes too large to be fitted into 
the core memory of the computer. The difficulty lies 
in the fact that, in order to calculate the average 
density at a given point under a symmetry operation 
of order n, densities have to be fetched at ( n - 1 )  
other points; these can be anywhere in an oversampled 
map which may contain several millions of points. 
The problem is thus basically an addressing problem 
in which, at first sight, an enormous file has to be 
made randomly accessible. 

An approach towards the solution of this problem 
has been made by Dr G. Ford (see Buehner et al., 
1974), using a pagination technique similar to the 
virtual memory systems of modern computers. 

The approach used here is much more radical, and 
eliminates the initial random access requirement by 
means of two sorting operations. 

.,. 

3.1. The double:sorting technique 
The nature of the addressing problem, and of the 

solution proposed here, are best understood by first 
analysing a simple process: the interpolation of the 
electron density of a crystal from a domain .~1 of a 
grid ~1 to a domain -~2 of a grid f¢2 'skew' relative to 
f~. Usually, -~2 will be a rectangular box; . ~  will be 
the asymmetric unit of the crystal, and grid f¢~ will 
be 'crystallographic' (i.e. based on the crystal axes). 
Programs have long been available to do this when 
the initial map can be accommodated in core (Cullis, 
Muirhead, Perutz, Rossmann & North, 1962). 

Let the grid coordinates in ~ be X~=(x~,y~,z~); 
they need not be integral. A bar will denote the opera- 
tion of reduction to the asymmetric unit ~ ,  i.e. of 
finding the point .~ in ~1 equivalent to X~ by a suitable 
space group transformation. In grid f¢2, we shall be 
interested only in integral points, with coordinates 
I2 = (i2,j2,k2). Let us denote by ?(1(/2) the coordinates in 
~¢~ of the point with coordinates 12 in f¢2. 

With this notation, it is clear that the density wanted 
at point 12 of -~2 is to be fetched at point R~(I2) of 
-~. We can therefore represent the whole interpola- 
tion as a succession of elementary operations of the 
form: 

'Get density at X~(I2); put it a t /2 '  repeated for /2  
running through -~2. If domain -~z is scanned in an 
ordered fashion relative to the coordinates in f¢2, the 
resulting sequence of points X~(I2) will keep jumping 
back and forth all through ~1 in an unpredictable 
way, whence the apparent need for a random access 
to the initial map. 

However, we can proceed more thoughtfully. 
Scanning -~z in the usual way, we write out for each 
of its points 12 a record of the form: 

Xe, X (12). 

This generates a file ( J )  containing a complete 
description of the tasks to be performed. But instead 
of executing these get-put requests in the order in 
which they have been issued, we shall reorder them 
beforehand so as to minimize the labour involved in 
collecting the densities out of the initial map. 

Suppose the map is given in -@1 as z sections, written 
sequentially in ascending z order. Let us sort the re- 
cords of file (jr) on zl, into another file (is).  We can 
now perform the whole interpolation in one pass 
through the map and through this sorted file, with 
only two sections in core at any one time. 

Read the first two sections of the map into core. 
For each record read from (Js), check zl against 
the upper section number zu. If zl < zu, interpolate 
the density at )~1(12) using sections z, and z , - 1  
which are currently in core, overwrite )71(/2) by 
0 and output a record of the form: 12, 0 on a 
file (0). If zl>_z,, overwrite the (now useless) 
lower section by the next section, check zl against 
the new z,; repeat this process until zu- 1 < zl < z,; 
then interpolate as above. 

Upon completion of this procedure, file (0) contains 
all the densities needed to reconstitute -~z. They are 
in a random order, but have their addresses attached 
to them. If, for example, we want the final map as a 
sequential file of y sections, we sort the records in 
(0) on Jz, to get a file (Os). We can now reconstitute 
this map in one pass thxough the sorted file, with only 
one section in core at any one time. 

For each record read from (0s), check jz against 
the current section number.j~. Ifjz =j¢, put density 
0 at location described by (i2,k2) in current sec- 
tion. Ifj2>j¢, write out the (now complete) cur- 
rent section, incrementjc by 1 and checkjz against 
it; repeat the process until Jc =Jz; then pursue the 
reconstitution as above. 

This five step procedure (generation/sort/interpola- 
tion/sort/reconstitution) does therefore succeed in 
producing the desired domain of density, without 
needing random access to the initial map. 

3.2. Solution of the general averaging problem. 
The operations of truncation, averaging, crystal 

rebuilding and background setting will now be in- 
corporated into the scheme outlined above. For sim- 
plicity, we shall first deal with 'proper' n.c.s.'s; in this 
case, the local symmetries of the aggregate form a 
group, so that there is essentially one envelope: the 
envelope of the whole aggregate [see Rossmann (1972) 
and (I) § 3.3.2]. 

3.2.1. Treatment of the protein density: first method 
Suppose the electron density in the asymmetric unit 

-~x of crystal 1 (space group $1) is given on a crys- 
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tallographic grid N1. A very general requirement will 
be as follows: extract a molecular aggregate d from 
this map; average it by its local symmetries; then 
build from this averaged aggregate the asymmetric 
unit N2 of a different crystal (crystal 2, with space 
group $2), on a crystallographic grid invariant by $2. 
This change of lattice and space group will be necessary 
in studies involving several crystal forms. 

Let a bar and a double bar denote the reductions 
to the asymmetric units of the two crystals (-~1 reduces 
to ]?le-@l; 12 to :r2e-@2). Let T1, . . . ,  Tn be the local 
symmetry operations of aggregate a~', including the 
identity, given as grid-coordinate transformations in 
N2. Let 5/~, be the envelope of d ,  given as an array of 
logical variables in N2; ~' will denote ~' 'folded back' 
into -@2 by $2. 

The operation to be performed can then be phrased: 
for all points 12 in u/~,, obtain the average of the densities 
at points 7:'112,...,TJ2, and put it at point 12; this 
will extract a~' from -@1, average it, and fold it back 
into -@2.* Since the densities needed are to be fetched 
in -@1 at points J?l(TlI2),...,-~l(TnI2), the whole task 
is a succession of elementary operations of the form" 

'Get density at XI(T,,I2); accumulate it at 12', 
repeated for 12 running through q/ and m running 
from 1 to n. 

Let us generate a file ( J )  by writing out, for each 
point 12 in ~', n records of the form" 

~, X,(rmI~) (m = l , . . . ,  n). 

If we processed this list as described in the previous 
section, each point 12 in q/would receive, at reconstitu- 
tion time, n densities coming from the n points symme- 
try-related to the initial point 12. Let us then slightly 
alter this last step. To perform the averaging, we re- 
place the 'put '  operations by accumulations in an 
initially cleared array, keep counts of how many den- 
sities are received at each location of the array, and 
divide each sum by the corresponding count when 
the section is complete. This is slightly more expensive 
than uniformly dividing all the sums by n. But it 
will cure the problems due to the unavoidable overlap 
of the envelopes at the contacts between aggregates, 
since in these regions it will average the densities 
belonging to the two neighbouring aggregates instead 
of adding them. Also, these individual counts will be 
needed to deal with the background. 

With this modified reconstitution program, we can 
average and rebuild simultaneously (i.e. using only 
one interpolation), with an amount of computation 
proportional to n x~r2 if J :2  is the number of points 
of grid f¢2 enclosed in ~'. 

* We could also get densities directly for all points/2 in q/. 
However, ~ usually consists of several disconnected pieces, and 
the local symmetries of each piece are not the :r,,'s, but the 
R~T,,Ri~'s, where Rt is the operation of S~ used to produce 
piece no. i from the original aggregate ~.  The other procedure 
avoids this inessential complication. 

3.2.2. Treatment of the protein density: second method 
Averaging and rebuilding may also be carried out 

consecutively. To do this most economically, we shall 
take advantage of a slight non-equivalence between 
the roles of $1 and $2. Indeed, $2 must be a true 
space group" it must map ~2 onto itself since 12 has 
to belong to f¢2 if 12 does. On the other hand, $1 is 
not thus restricted, since it handles non-integral 
coordinates anyway; its only function is to enable us 
to retrieve from -@1 all the electron densities we may 
ever need. In this role as an 'e.d. supply', the pair 
(-@1, $1)can be replaced by any pair (-@,S)such that 
every point at which the e.d. will be needed in the 
interpolation be equivalent to a point in the initial 
domain -@ by a transformation of S. 

Let us take for -@ a domain of an intermediate 
Cartesian grid f¢ (with coordinates noted I or X) 
containing a suitably chosen 1/nth of the aggregate, 
defined by its envelope in ~ noted ~//n; S will consist 
of the local symmetries 7'1,. . . . .  Tn, expressed as grid 
coordinate transformations in ft. 

The averaged density in -@ is first computed from 
the initial map -@1, using a list of records of the form" 

I,.~l(TmI) for I in q!/n, and m =  1 , . . . , n .  

The whole final asymmetric unit -@2 is then rebuilt 
from -@, using a list of records of the form: 

I2,.~(12) for 12 in ~ ,  

where the " on ) :  means a reduction to -@ by S. The 
only restriction imposed on the choice of ~g/n is that 
such a reduction should be possible, i.e. that the logical 
union of 7'1 ( ~ / n ) , . . . ,  Tn(~/n) should contain X(~) ;  
in particular, ~/n does not have to coincide with the 
boundary of a subunit. 

The total amount of computation involved is now 
proportional to ~¥'+~r2 (if ~ contains ~4 r points of 
grid N), but a double interpolation is required. The 
two methods will be compared in § 5. 

3.2.3. Treatment of the background 
Some further modifications are needed in order to 

deal with the density outside the molecular bound- 
aries. 

Note that if we want to set it to a uniform value, 
this value should be the average of the density outside 
the molecules [and not inside as in Argos et al. (1975)] 
if the correct relative scale between protein and solvent 
is to be preserved. 

To estimate the average density in the solvent re- 
gions of crystal 1, we keep track of which points of -@1 
are used during the interpolation, and evaluate the 
background density as the average of the densities at 
all unused points; this value can then be passed on 
to the reconstitution program for -@2, and put wherever 
no density has been received in a completed section. 

If crystals 1 and 2 are the same, we may wish to 
retain the background structure of the initial map; for 
this purpose, we reconstitute each section into the 
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corresponding section of the initial map (instead of a 
cleared array), letting the first density received at each 
point overwrite the initial density. 

3.3. The case of  improper local symmetries 
Thus far, we have considered only proper n.c.s.'s. 

'Improper' local symmetries, in which the group 
property is lost, can be handled within the same general 
framework. 

Let Tpq be the transformation bringing molecule p 
onto molecule q. Let us label the envelopes of the n 
molecules as Up (p= 1 , . . . , n )  by defining them by 
means of integral (instead of purely logical) variables. 
We can then use these labels to select the transforma- 
tions to be applied to each point at which an averaged 
density has been requested. 

To average and rebuild simultaneously, scan a do- 
main of Nz containing all the Up's, generating the 
list: 

Iz, Xt(Tp~Iz) for Iz in Up, and q=  1 , . . . , n ,  

then proceed as usual. 
To rebuild an asymmetric unit possessing the re- 

quired improper local symmetry from an already aver- 
aged subunit, given in a reference position labelled 
0, scan the same domain, generating the list: 

Iz, X(TpoI2) for Iz in Up, 

then proceed as usual. 
The determination of the transformations Tpo or 

Tp0 entails special difficulties. In the case of proper 
symmetries, the position of one heavy atom per mol- 
ecule (assumed to occupy an intramolecular site) suf- 
fices to determine uniquely the local symmetries of the 
aggregate; this is not true for improper symmetries, 
as each molecule still possesses three rotational degrees 
of freedom. A possible solution is to compute an e.d. 
map using the phases given by the single isomorphous 
derivative, then try and correlate the regions of density 
surrounding the heavy-atom sites. This method was 
used by Jack (1972) for the enzyme barnase. Flette- 
rick & Steitz (1975) refined in a similar fashion the 
transformations relating the different subunits present 
in two crystal forms of yeast hexokinase. The imple- 
mentation of this correlation technique within the 
double-sort framework is discussed in the next section. 

3.4. Correlation of  electron densities 
In their study of the effect of oxygen binding on the 

quaternary structure of haemoglobin, Muirhead et al. 
(1967) used a least-squares superposition method: for 
each pair of corresponding oxy- and deoxyhaemoglobin 
chains, six parameters (Euler angles and three transla- 
tion components)were refined in order to produce 
the best fit between the two electron densities. The 
logic- of the program is as follows (J. M. Baldwin, 
personal communication): keep one of the maps in 
core; read successive sections of the second map into 
an array; for each point within the boundaries of the 

chain under consideration, compute the coordinates 
of the corresponding point of the first map, using the 
current values of the parameters; calculate the electron 
density and its gradient at this point, and increment 
the sums needed for the least-squares parameter re- 
finement. 

Clearly, if the densities of map no. 2 were sorted 
on the coordinate labelling the sections of map no. 1, 
we could perform the calculation without needing to 
keep map no. 1 in core. 

Using the notation of § 3.2, we want to correlate 
the density of  the region of crystal 2, contained in 
envelope 0-// with a corresponding domain of crystal 
1; we have approximate starting values for the par- 
ameters relating them. 

We first obtain electron densities in a domain ~'1 of 
crystal 1 (on grid Nt) containing all the points which 
will be needed in the refinement. This is done most 
economically with a list of records: 

[t, I1 for all points It in . ~  

containing only integral grid coordinates; in this way 
we can replace the interpolation step by a simpler 
'pick-up' step, which needs only have one section of 
the map -~t in core at any one time. 

We then generate a file ( J )  of records" 

12, )(1(12) for all points 12 in q/, 
the correspondence between Iz's and Xl's being that 
defined by the initial values of the parameters. We 

: ~ _  

sort these records on Iz so that we can pick densities 
out of-@2 and obtain a file (0) of records" 

02,XI(Iz) where 02 has been picked up at I2. 

Finally, we sort these records on Xt (e.g. zt if the map 
in ~[  has been reconstituted as z sections) and obtain 
a file (0s). 

The correlation program can now work from map 
~[  and the sorted list of densities (0,). The logic of 
this procedure is similar to that of the program used 
by Muirhead et al., but it can handle much larger 
problems since only two sections of ~ .  have to be 
present in core at a time. 

3.5. Handling of  molecular envelopes 
The tracing system of § 2 codes molecular envelopes 

as arrays of logical (or 1-byte integral) variables, 
corresponding to the sections of the map from which 
the boundaries were inferred. Usually, these sections 
will be skew relative to any crystallographic grid (e.g. 
perpendicular to a local n-fold axis). On the other 
hand, in §§ 3.2 to 3.4, envelopes were used as arrays 
defined on other grids. Therefore, the facilty must be 
provided to move envelopes between different grids. 

We shall use the notation of the preceding sections. 
In the case of proper symmetries, the envelope is 

described by purely logical variables. To move enve- 
lope q/, defined on grid ~f2, onto grid f~t, with the op- 
tion of imposing local symmetry by transformations 
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T~, . . . ,  T,, generate a list ( J )  of records: 

XI(T,,,I2) for all points Iz in ~ ,  and m =  1 . . . , n ;  Option 
' number 

sort these records (e.g. on x~ if the envelope in ff~ 0 
is wanted as x sections) into a file (J~); then recon- 
stitute the envelope in one pass through this sorted 
file, with only two sections in core at any one time, 1 
as follows: 

2 
Clear the arrays for two sections and initialize 
their numbers. For each record read from (J~), 3 
check x~ against the upper section number x~. If 
x~<x, ,  put the value 'true' at the four nearest 
grid points in each of the two sections x~ and 4 
x , , -  1 which are currently in core. If x~ _ x,, write 
out the (now complete) bottom section x ~ - l ;  5 
clear the corresponding array, increment x, by 1 
and check x~ against it; repeat until x~-1  < 6 

x~ < x,,, then pursue reconstitution as above. 

In other words, the presence in (J~) of a record for 
point (xl,yl,  zl) is interpreted as meaning that its eight 
nearest neighbours in f91 are within the envelope. 

In the case of improper symmetries, the envelopes 
have to be labelled (§ 3.3). To move a set of labelled 
envelopes Up ( p =  1 , . . . , n )  from grid ff2 to grid if1, 
we use a list of records: 

Xl(Iz),p for all Iz's in Up and all p's, 

and proceed as above, except that in the reconstitu- 
tion we put the value p (instead of ' true') at the eight 
nearest grid points. Ambiguities due to overlaps are 
resolved by giving priority to the highest p values. 

The generation of a set of labelled envelopes U~ 
( p =  1 , . . . , n )  from a reference envelope U0 proceeds 
likewise, using a list of records: 

X~(Tofl2),p for all points 12 in U0, and p =  1 , . . . ,  n. 

Note that there are no reductions to the asymmetric 
unit, since envelopes are used 'unfolded' (see footnote 
to § 3.2). 

3.6. Scope of  this map handling system 
The handling of e.d. maps by the double-sorting 

technique possesses several advantageous features: 
- A large variety of operations can be carried out 

by generating the appropriate file (,,¢), then proceeding 
in an invariable way. Thus, each type of operation 
corresponds to an option in the generating program. 
Table 2" summarizes those available in the existing 
program. 

- When the averaging/rebuilding has to be iterated, 
as in the procedure of § 1, the same file (J~) can be 
used as long as the envelope and the symmetry ele- 
ments are not modified. 

- The space-group specificity is confined to the 
subroutines of the generating program which perform 
the reductions to the initial domain (N~ or -~) and to 
the final asymmetric unit (N2). 

Table 2. Options o f  the generating program 
Records on (J )  

Types Ranges 
• I1, Ii All 11 in .~ 

I2,Rl(T,,,I2) All 12 in ~2 
m=l , . . . , n  

I2,iga(T,,I2) All 12 in a¢ 
m = l , . . . , n  

XI(TmI2) All 12 in °k' 
r e = l , . . . , n  

X1(I2), l All 12 in U~ 
l=1 , . . . , n  

-12, ~1(T,,,I2) All 1, in 
F n = l , . . . , n  

~/~, )~,(T,,.I2) All 12 in U, 
l=1 , . . . , n  
m = l , . . . , n  

Xl(To,,,I2),m All 12 in U0 

i~,XI(T,,,oI2) All 12 in Urn 
m = l , . . . , n  

Use of this option 
Generation of an 
arbitrary crystallo- 
graphic domain 
from a crystal a.u. 
Skew section calcula- 
tion, with optional 
averaging 
id., with truncation 
by an envelope 
Transport of an un- 
labelled envelope 
with optional sym- 
metrization 
Transport of a set of 
labelled envelopes 
Averaging by proper 
n.C.S. 

Averaging by im- 
proper n.c.s. 

Generation of a set 
of labelled envelopes 
from a reference 
envelope 
Generation of an a.u. 
possessing an im- 
proper n.c.s, from a 
subunit in reference 
position 

- Any mode of sectioning maps and envelopes may 
be adopted, provided the corresponding sorting steps 
are made consistent with them. 

- Main storage and data transfer facilities are used 
with maximum efficiency. Any method using a random 
access to the initial map is equivalent to an inefficient 
partial sorting of the densities needed by the opera- 
tions we list in file ( J ) .  

This system has been programmed in Fortran IV 
for IBM 370 machines, on which a highly efficient 
S O R T / M E R G E  package is available. The half-word 
arithmetic facility is used to make the interpolation 
program work from a half-word e.d. map: the whole 
procedure of § 1 then requires only one full-word 
section of the initial map. This limitation is the same 
as in most fast Fourier transform programs, so that 
if an e.d. map can be calculated at all, it can be handled 
by this system. To deal efficiently with the large 
number of short records contained in the intermediate 
work files, I used a special input/output assembler 
routine written in this laboratory by Dr R. C. Ladner. 
The speed of execution of the three programs varies 
with the options chosen, but lies between 10 000 and 
30 000 records per second on an IBM 370/165. 

A domain of density can easily be extracted from 
a crystal and used to build a different crystal. This is 
of special interest in the solution of structures by 
analogy, when only an e.d. map (but no atomic coor- 
dinates) 7s available for the known structure. A mutant 
of human haemoglobin has been studied using the 
present map handling system (Anderson, 1975). 
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4. Handling of phase information 

4.1. Usefulness o f  a weighting scheme 
Having obtained the averaged e.d. map, we could 

simply calculate structure factors from it, and use 
their phases in the next iteration. This method is 
equivalent to that proposed by Crowther (1969) in 
his reciprocal space approach, and was used by 
Muirhead et al. (1967), Harrison & Jack (1975) and 
Argos et al. (1975). The convergence properties of the 
resulting algorithm were examined in (I),* and it 
was shown that it should converge for perfect data 
if the crystal asymmetric unit contains at least three 
identical molecules, and if the starting phases are good 
enough. 

It seems desirable, however, to weight each structure 
factor according to the accuracy of its phase. Not only 
will the noise in the final e.d. map be reduced, but the 
use of weights during the iteration itself  will make the 
algorithm less noise-sensitive, and hence widen its 
domain of convergence. Indeed, it will allow the well 
phased reflexions to phase the poorly phased ones, 
while minimizing the detrimental effect of the initially 
poorly determined phases. 

Blow & Crick (1959) introduced such a weighting 
scheme for the combination of phase information 
obtained from different isomorphous derivatives. 
Their analysis of I.R. data produces, for each re- 
flexion, a phase probability density Piso(~) which is 
used to compute the weighted Fourier coefficient: 

IFlmi~o exp (i~o~o)= IF[ Paso(e) exp (ie)do~. 
0 

These structure factols yield the 'best' e.d. map, with 
the minimum expected mean-square error. 

Symmetry-based phase information will now be cast 
in a similar probabilistic form, and combined with 
that given by I.R. so as to provide weights at all 
stages of the phase determination. A similar procedure 
was sketched by Buehner et al. (1974). 

4.2. The averaged structure as a source o f  phase in- 
formation 

The simplest and most useful way of expressing the 
initial hypotheses of n.c.s, is to say that the structure 
should be invariant by the averaging/rebuilding opera- 
tions of steps 3(b) and 3(c) (§ 1). In the early itera- 
tions, or even later if the symmetry is not exact, this 
invariance will be only approximate; nevertheless, the 
averaged electron density will still contain a 'sub- 
stantial part' of the final solution. 

* A factor of two was overlooked in the final expression 
relating the quadratic errors at cycles i and i+ 1; line 13 on 
page 405 of (I) should read: 

~ +~_< [~ + (2~)'21~. K. 

As ~:[~+ (2K) 112] < 1 for K < 0.4 (instead of 0.5), the conclusions 
drawn in (I) remain practically unaffected. 

Sim (1959) has shown how to use such a 'known 
part' of a structure, with Fourier coefficients 
IF,,I exp (iaK), to derive a phase probability density 
Ps~m(a) for each Fourier coefficient IFI exp (ia) of the 
total structure. If ( Iv )  is the mean intensity contributed 
by the unknown part of the structure, his formula can 
be written : 

Psim(~)ocexp {[21El. IFKI. COS (~--c~:)]/(Iv)} • 

The larger the 'known' fraction, the smaller ( Iv) ,  
hence the stronger the phase indications given. Sim's 
formula thus provides a probabilistic solution to the 
structure factor equations derived by Rossmann (1967) 
from the same hypotheses. 

In complete analogy, the use of Sim's formula with 
the average e.d. as a known part gives the desired 
probabilistic solution to the equations implied by 
n.c.s. Estimating the quantity (Iv) by the mean 
discrepancy between observed and calculated intensi- 
ties will automatically correlate the overall weight 
given to the symmetry with the closeness of fit after 
symmetrization. 

4.3. Combination o f  phase information 
Rossmann & Blow (1961) examined the problem of 

combining phase information from I.R. and from a 
partial knowledge of the structure, and proposed to 
multiply the corresponding phase probability densities, 
i.e. to use 

P(~)-- Piso(~). Psim(00 • 

It may not always be legitimate to consider Psim(a) 
as independent from Piso(~). Indeed, the 'known part' 
will usually be either an interpreted and refined portion 
of an e.d. map phased by I.R. (Sweet, Wright, Janin, 
Chothia & Blow, 1974), or, in our case, the averaged 
version of a map computed with I.R. phase informa- 
tion. However, this dependence is very complex, re- 
lating globally all the PSim'S to all the Piso'S. The only 
practical solution to this problem seems to be an 
inspired relative weighting of the two sources of phase 
information, as in 

P(oO= Piso(O~)UPsim(OO v. 

This point will not be discussed any further.* 
Rossmann & Blow pointed out that phase combina- 

tion could be greatly simplified by an appropriate 
encoding of the functions involved. Indeed, Psim(CZ) is 
completely described by the two numbers Cn and cpn 
such that: 

Psim(~) ocexp [ CH COS (O~-- qgt~r) ] . 

Similarly, I.R. produces probability densities which 
can, with good accuracy, be cast in the form: 

Paso(00 ocexp [Cis cos (c~- 4 1 )  - -  Dis cos (¢x -- 42) ] 

* This problem is also present to some extent in the I.R. 
method: the refinement of the heavy-atom parameters of the 
different derivatives can meet with severe difficulties, due to 
biases (Blow & Matthews, 1973). 
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and can be coded by Cis , Dis , 41 and 42. 
This analysis was extended by Hendrickson & Latt- 

man (1970), who used standard functions of the form: 

PaBco(a) = exp (A cos c~ + B sin ~ + C cos 2~ + D sin 2~) 

(overlooking normalization factors). The coefficients 
A,B ,C ,D are easier to handle than those chosen by 
Rossmann & Blow: combination of phase informa- 
tion from different sources amounts to a simple addi- 
tion of their homologous coefficients. Such functions 
can also represent phase information from anomalous 
scattering and direct methods; they can even be made 
rigorously accurate for I.R. if the Blow & Crick error 
model is slightly altered, so as to use a lack of closure 
on intensities rather than on moduli. This complete 
system has been used by Hendrickson et al. (1973) in 
a 2 /~ resolution study of sea lamprey haemoglobin, 
which includes a test application of the tangent for- 
mula. 

When the original Blow & Crick error model is 
used, it is necessary to determine, for each reflexion, 
the values of A, B, C and D (hereafter called the 
'phase coefficients') giving the best fit between Piso(C 0 
and Pa,co(a). Hendrickson (1971) proposed using a 
least-squares fitting of their logarithms, i.e. to mini- 
mize the quantity: 

Ii ~ w(~)[ln P, so(,X) 

- ( A  cos ~ + B  sin ~+ C cos 2 ~ + D  sin 2c0]Zd~, 

with a weight w(c 0 which would optimize the fit 
between the probabilities themselves. The weight 
w(c0=Piso(~ ) was found to be excellent. However, 
w(~) = 1 is still quite good and computationally cheaper 
since the phase coefficients are then simply the first 
four real Fourier coefficients of In Piso(~). 

4.4. The phase combination program 
At the outset (step 1 of§l),  we save in a coded form 

the initial probability densities Pi~o(C 0 in a reference 
list. The phase coefficients are computed as described 
above, with weight w(~)= 1, in a routine grafted onto 
a program for the refinement of heavy-atom par- 
ameters which originated at Purdue (Adams et al., 
1969). 

Before estimating the quantity (Iu) by comparing 
calculated and observed intensities, it is necessary to 
apply a temperature factor to the calculated structure 
factors. This correction allows for the following two 
effects: 

(1) The structure factors used in the calculation of 
the e.d. map [step 3(a) of § 1] contain the observed 
moduli weighted by figures of merit. These fall off 
with increasing resolution, and their mean value usu- 
ally behaves like an artificial temperature factor 
(Dickerson, Kendrew & Strandberg, 1961). 

(2) The use of linear interpolation causes a loss of 
spectral power, which also increases with resolution. 
This effect is correctable by a temperature factor only 

if relatively fine grids are used; for coarse grids, a 
special profile correction is needed. This will be dis- 
cussed at length in § 5.3. 

The phase combination [step 3(e), §1] therefore 
proceeds in three passes: 

1st pass. The reflexions common to the reference 
list and the calculated structure factor list are selected. 
A rephasing flag is set for each of those which are 
within the prescribed resolution limits, and whose 
figure of merit is less than a given maximum value 
(above this value, the phases are to be kept fixed). 
A scale factor and a temperature factor are determined 
by a Wilson plot to produce the best fit between the 
two intensity distributions. 

2ndpass. The scale and temperature corrections are 
applied to the calculated structure factors. Statistics 
are made on the comparison of their phases with the 
current phases, and of their (corrected) moduli with 
the observed moduli. The quantity (Iv) is computed 
in resolution shells as (llobs--Olcald) where 0 is the 
fraction of the total structure which should ideally 
be present in the 'known part'. When using an averaged 
structure, 0 will be taken as 1, but for other applica- 
tions [e.g. use of a model for part of the structure, as 
in Sweet et al. (1974)], 0 may be less than 1. 

3rd pass. Phase combination is performed, unless a 
simple use of the calculated phases has been requested. 
The phase coefficients taken from the reference list 
are incremented by those calculated from Sim's for- 
mula, to compute the new phases and figures of merit. 
These are used to update the reference list, and to 
produce Fourier coefficients of the form: 

(WobslFIob~-- WcalclF~al¢l)exp ( i(~combined) , 

where Wobs and Wc,~c can be specified at will; in this 
way, any desired type of Fourier map may be obtained 
(typically, Fo, Fo-Fc or 2Fo-Fc maps). Statistics are 
calculated on the phase shifts upon combination, both 
from the previous current phase and from the cal- 
culated phase, and on the changes of figure of merit. 

The various statistics produced by this program 
provide a thorough check on the progress of the re- 
finement. All the statistics are compiled as a function 
of resolution and current figure of merit. Those on 
moduli include an R index (Y IFlobs-IFca,cl/Y~lFIobs), 
a correlation coefficient between IFlobs and IFcal¢[, and 
the lack of closure defined above; those on phase 
shifts are made both on absolute shifts (Izl~l) and on 
relative shifts (IA~l/cos -I  m). The program is written 
in IBM Fortran IV; using a 5 ° interval in the calcula- 
tion of the centroid phases, it can process 20 000 re- 
flexions a minute. 

5. Discussion 

5.1. Minimum starting phase information 
To what extent can the M RM be considered as 

autonomous (i.e. independent from I.R.) in the study 
of an unknown structure? 
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Rossmann (1972) distinguishes three successive prob- 
lems to be solved in its application: (I) the rotation 
problem; (2) the translation problem; (3) the actual 
phase determination. 

I would like to add a problem 2A: the molecular 
envelope problem. Indeed, the role of the envelope is 
far from negligible: Argos et al. found that a true ab 
initio phasing of lobster GPD, starting with a spherical 
envelope, did not yield any useful result. 

As mentioned previously, the availability of a single 
(intramolecular) isomorphous derivative will provide 
a solution to all four problems. Rotations and transla- 
tions are determined from heavy-atom positions, either 
directly (for proper symmetxies) or after an e.d. 
correlation search on the SIR map (for improper 
symmetries). Averaging of the SIR map gives a reason- 
ably accurate envelope. Refinement of the SIR phases 
by direct-space averaging and phase combination will 
usually solve the phase problem. It seems that in- 
formation of comparable accuracy can be obtained 
without I.R. in the sole case of some spherical viruses, 
such as TBSV (Harrison, 1971) or SBMV (Johnson, 
Rossmann, Smiley & Wagner, 1974), which occupy 
a special position of a crystal lattice in which they 
express part of their icosahedral symmetry. 

In the absence of any I.R. data, the rotation prob- 
lem can be tackled using the method proposed by 
Rossmann & Blow (1962) and made more practical 
by Crowther's fast rotation function (Crowther, 1972). 
This method has had numerous successes, but its 
application is not free from pitfalls (see for example, 
Akervall et al., 1971). The determination of transla- 
tions is a much more serious problem; the technique 
available (Rossmann, Blow, Harding & Coller, 1964) 
has been used to position local diads in ~-chymotryp- 
sin (Blow, Rossmann & Jeffery, 1964) and insulin 
(Dodson, Harding, Hodgkin & Rossmann, 1966), but 
is not of general applicability. On lobster GPD, the 
rotation function was able to determine correctly the 
non-crystallographic rotations (Rossmann, Ford, 
Watson & Banaszak, 1972) but the position of the 
molecular centre could only be found with the help 
of I.R. (Buehner et al., 1974). Finally, apart from 
'packing considerations', no method exists for the 
determination of protein molecular envelopes without 
phase information. For virus structures however, EM 
can provide a valuable help (see e.g. Finch, Gilbert, 
Klug & Leberman, 1974; Jack, Harrison & Crowther, 
1975). 

The phase determination stage may also be un- 
manageable without I.R. phase information, even if 
the other problems have been solved without it. A 
possible snag lies in enantiomorph ambiguity. Crowther 
(1969) showed that if the arrangement of envelopes 
was centrosymmetric, only the real parts of the struc- 
ture factors could be determined by the exploitation 
of non-crystallographic symmetry alone. Therefore, 
phases generated from such information may not 
even be immediately useful to locate heavy atoms in 

isomorphous derivatives. This problem has not yet 
been encountered in practice: Jack (1973) solved a 
centrosymmetric projection of TMV; Argos et al. 
(1975) and Jack et al. (1975) circumvented it by using 
envelopes determined from I.R. and EM respectively. 
It is likely to be most frequent in the case of viruses, 
where the envelopes obtained 'for free' will usually be 
centrosymmetric. 

Another source of difficulties may be the inability 
of the local rotations to provide a homogeneous inter- 
action between all reflexions. An extreme case in this 
respect is the TMV disc, in which the 17-fold axis is 
almost parallel to the c* axis. At low resolution, the 
phase constraints implied by this symmetry couple 
reflexions hkl and h'k'l' very strongly for l=l ' ,  but 
very loosely for l-¢ l'. If an ab initio phasing is attemp- 
ted, a segregation may occur among the planes of 
reciprocal space with different l values: phases will 
rapidly reach consistent values within each plane, 
while enantiomorph consistency between planes may 
take much longer to set in or even fail to do so, 
especially across planes of systematically weak re- 
flexions. Phase determination or extension on TMV 
in three dimensions should therefore start with SIR 
phases for some non-centrosymmetric reflexions, at 
least within a slab containing the c* axis, to ensure 
global enantiomorph consistency. 

It seems therefore (at least in the present 'state of 
the art') that some data on a single isomorphous 
derivative will most often be a necessary prerequisite 
to the exploitation of n.c.s, in the solution of an un- 
known structure. 

5.2. G lobal and relative weighting in the phase combination 
The purpose of the internal weighting ({} 4.1) is to 

'rectify' the interactions among phases, by allowing 
reliably phased reflexions to influence poorly phased 
ones while inhibiting the converse. Fig. 1 is a plot of 
the mean phase errors on B. St. GPD (relative to the 
final phases obtained by DIR and two cycles of 
averaging), as a function of starting figures of merit at 
various stages of the refinement. It shows that the 
weighting scheme does have the desired effect: the 
more accurate a phase is initially, the less it is altered 
during the refinement. 

The relative weight given to MIR and MRM phase 
information is automatically determined, in our pro- 
gram, by the global agreement between observed and 
calculated moduli (§ 4.4). Recent work in this labora- 
tory suggests that, when the two sources of phase 
information are truly independent, this relative 
weighting is essentially correct. In his study of human 
foetal haemoglobin (HbF), J. Frier (private communi- 
cation, 1975) used data on the native protein and one 
isomorphous derivative to generate SIR phases; these 
were then combined with phases calculated from a 
human adult haemoglobin (HbA) molecule placed in 
the HbF unit cell. HbF differs from HbA by 39 
residues out of 146 in the fl-chain. Although these 
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discrepant side chains were not deleted from the atomic 
coordinate list used to calculate model structure fac- 
tors, the final HbF e.d. map shows unambiguous HbF 
side chains for most of them, with almost no residual 
HbA features. As the mean figure of merit rose from 
0.47 to 0.77 during phase combination, it appears 
that the weight given to the calculated phases is 
strong enough to resolve the SIR phase ambiguity 
satisfactorily, but not so strong as to swamp the dif- 
ferences between the model and the structure under 
study. Encoding the complete SIR probability curve 
PSIR(00 by its phase coefficients certainly plays a 
crucial role in this case, in that it is able to discriminate 
between two classes of reflexions with low initial 
figures of merit ms,R: (1) those for which Psm is flat 
(no information present); (2) those for which PS~R is 
bimodal (two well defined possibilities between which 
no choice is yet possible). 

These two categories behave quite differently when 
combined with calculated phases by the Rossman & 
Blow method, and retaining this distinction is essential. 

A simplified procedure has been used by Fletterick & 
Steitz (1975) to combine phases from two crystal 
forms of yeast hexokinase. The reliability of the I.R. 
phase is determined by its figure of merit; that of the 
calculated phase is inferred from local (rather than 
global) agreement between observed and calculated 
moduli. This method was found satisfactory when 
used with good MIR phases, in which bimodal 
probabilities are rare; mMm is then indeed a good 
indicator of the phase error. In a case such as HbF, 
however, the consideration of msl R alone would have 
led to an underestimation of the amount of phase 
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Fig. 1. Phase discrepancies at various stages of  the phase 

refinement for B. St. GPD,  as a function of the figure of  
merit  at these same stages. The 's tandard of truth '  is the set 
of  phases obtained after two cycles of  refinement from D I R  
phase informat ion (DIR  cycle 2). 

information provided by SIR, and resulted in an 
excessive weight being given to the model phases. 

5.3. Optimization o f  averaging computations 

To make the molecular replacement equations sol- 
uble in practice, a compromise has to be found between 
accuracy and size of the computations. This final 
paragraph is devoted to a study of the relation between 
gain in computational speed and loss of accuracy, 
which should be useful in this respect. 

In the approximation thus far used in reciprocal 
space, both of these quantities are determined by a 
single parameter (the cut-off of the interference func- 
tion), so that the dependence on N 2 mentioned in the 
introduction cannot be overcome. 

The direct-space averaging method is more flexible. 
By proper choice of the sampling intervals in the 
initial and final e.d. maps, and application of a profile 
correction to the calculated structure factors, it is 
possible to perform fast and accurate calculations 
using linear interpolation. The computation time then 
varies as N, and the core requirements as N z/3. With 
the program system described in §§ 2 to 4, such calcula- 
tions are manageable in the 100 000 range. 

5.3.1. N2-dependence o f  exact calculations 

A rigorous solution of the equations expressing 
non-crystallographic symmetry, whether in direct or 
in reciprocal space, is intrinsically a computation of 
size proportional to N z for N independent reflexions. 
This is due to the existence of confinement constraints 
in both spaces, with symmetrical roles: (I) in reciprocal 
space, data are available only within the resolution 
sphere S• of radius A-I(A-1); this causes the non- 
independence of e.d.'s sampled on a grid finer than 
A/2, and yields an exact interpolation formula for 
them (Shannon, 1949); (2) in direct space, the protein 
density is bounded by the molecular envelope U; this 
is what causes each structure factor to interact with 
its neighbours and those related by noncrystallographic 
rotations, in a way formally identical to a Shannon 
interpolation [see (13, § 3.3.2]. 

These constraints (in principle incompatible) are 
most easily expressed multiplicatively in each space, as 

Zsa . F = F  and yv . o~ °=Q° . 

using the notation developed in (I). However, as we 
perform the averaging in one of these spaces only, the 
confinement constraint in the other space has to be 
treated by convolution, typically in a Shannon inter- 
polation, which is the source of the N2-dependence. 
Attempts to reduce the amount of computation involve 
an approximation of this convolution operation. 

5.3.2. Approximation in reciprocal space 

In the treatment of reciprocal-space equations, com- 
putation can be saved by truncating the interference 
function G = I / U ~ [ z v ] .  This replaces the envelope 
indicator Zv by its convolution Zv.o~[Zr] with the 
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Fourier transform of the truncating function 2'r, thus 
defining the envelope U at a resolution lower than 
that at which phases are to be determined. The errors 
introduced are quite considerable, as discussed by 
Main (1967) and by Jack (1973) who sought to 
minimize them by overestimating the envelope dimen- 
sions. However, it is untenable to keep this cut-off 
fixed as the resolution is increased, so that the com- 
putational requirements still vary as N z. 

Another possibility would be to compensate the 
distortion of Zv by multiplying the electron density 
in real space by 

xd(z , . , ,~rzr])  . 

This correction would be difficult at the contacts 
between neighbouring aggregates, and could not pre- 
vent some smearing of fine details of the envelope. It 
bears a formal analogy to the direct-space method 
described below, but is less flexible. 

5.3.3. Approximation in direct space 
Shannon's interpolation can be replaced by linear 

interpolation. This amounts to convoluting the sampled 
density with a triangular wedge function, instead of 
the Fourier transform of the limiting resolution sphere. 
A detailed derivation of the effects of this approxima- 
tion is given in the Appendix, which may be summar- 
ized as follows: the recomputed structure factors suffer 
an attenuation which increases with resolution, cor- 
responding to the shape of the central peak of the 
transform of the wedge, and the signal lost reappears 
as random noise. 

The attenuation can be compensated by a suitable 
profile adjustment of the calculated structure factors, 
applied before temperature scaling in the first pass of 
the phase combination (§ 4.4). The noise level can 
be reduced by the use of a fine enough sampling 
interval ~ in the initial e.d. map calculation [step 
3(a), § 1]. On the other hand, the size 09 of the grid 
on which the averaged map is computed need only 
be slightly finer than the coarsest grid allowed by 
Shannon's sampling criterion [see Appendix, equa- 
tion (A6)], which is of size A/2 for calculations out to 
resolution A (A). As shown in Table 3, the amount 
of computation depends mainly on this final sampling 
interval co, whereas ~ determines the maximum core 
requirements. The situation is thus more favourable 
than in reciprocal space, since accuracy can be in- 
creased while keeping the length of the calculations 
almost unchanged. Once the ratios a/A and co/A have 
been chosen, the calculations can be carried out with 
constant relative accuracy.as the number N of inde- 
pendent reflexions is increased; their length varies as 
N, and the core requirements as N z/3. This makes the 
direct-space averaging method workable in practice. 

5.3.4. Parameter optimization in direct-space averaging 
How oversampled should the initial e.d. map be? 

Let ~V be the total r.m.s, error due to linear interpola- 

Table 3. Costs o f  the different steps o f  direct- 
space averaging, using simple interpolation (§3.2) 

for  a proper n.c.s, of  order n. 
The symbols used in this table are defined as: .h/'l = number of 
grid points in map no. 1 ; ./V'2 = number of grid points in map 
no. 2 within the aggregate boundaries; ~l (i = 1,2) = number of 
grid points in one section of map no. i. 

Step name Computation Core size 
Done { 
only 
once 

Done 
at 
each 
cycle 

GENERATE nJV'2 Fixed 

SORT 1 n,Ar2 Adjustable 
FOURIER SYNTHESIS ~/'1 5el 
I N T E R P O L A T I O N  nJ[/'2 ,-~O 1 

SORT 2 ju, V~ Adjustable 
RECONSTITUTION nJ¢'~ ow2 
FOURIER ANALYSIS ~4/'2 5e2 

tion, as estimated in the Appendix. Obviously, if it 
is larger than the errors in the observed moduli, the 
convergence will be limited by this systematic error 
rather than by the accuracy of the data. The desired 
criterion is thus that £" should be less than the standard 
deviation of  the data at the outer resolution limit. 

The degree of oversampling required is often under- 
estimated. For example, Argos et al. (1975) did their 
calculations on lobster GPD with a grid interval 
~=2A out to resolution A=4.9 A. As double inter- 
polation was used, the r.m.s, noise level, as given by 
equation (A8) of the Appendix (n=4, n i=4,  I¢=0.15), 
was 115% of the r.m.s, values of high-resolution 
moduli. Although this estimate is an upper bound, it 
accounts for the slow convergence and large final phase 
errors obtained. It also suggests that these results 
could be considerably improved by using a finer grid 
and simple interpolation. Similar considerations apply 
to the calculations of Muirhead et al. (1967). 

The same formula (A8), applied to the calculations 
done on TMV (A=5.0, ~=0.9, n=17,  n/=16, x =  
0"018) gives an r.m.s, noise level of at most 11-8% at 
5.0 A resolution. On B. St. GPD, simple interpolation 
was used on a 0.45 A grid at 2.7 A resolution; equation 
(A7) of the Appendix, with n=4,  n1=3, ~:=0.15, gives 
an r.m.s, noise level of at most 4.2%. In both of these 
cases, the r.m.s, error due to linear interpolation was 
about a third of the mean standard deviation of the 
highest resolution data. 

As a general rule, A/oc should lie between 5 and 6, 
unless a very high symmetry is handled; A/09 need not 
exceed 2"5. These typical values are useful in choosing 
the averaging method (§ 3.2.1 and 3.2.2). As shown in 
Table 3, averaging by simple interpolation involves an 
amount of computing proportional to n times./V" z. If 
double interpolation is used, the intermediate grid 

(§ 3.2.2) should be as fine as grid Cgl, since it also 
limits the accuracy; the amount of computation is 
then proportional to JV'+.Ar2, with ,/V'=(09/c03jV'2. As 
(09/a)3 is typically of the order of 15, double interpola- 
tion should be used only if n >~ 16. For n ~ 16, it would 
roughly double the noise level while saving little com- 
putation. 
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5.3.5. Capabilities of the present programs 
With the parameters quoted above, one cycle of 

phase refinement by direct-space averaging takes about 
12 minutes for B.St. GPD at 2.7 A resolution (N= 
42 000) and 25 minutes for TMV at 5.0 A resolution 
(N=38 000) on an IBM 370/165 computer; in both 
cases, this is shorter than a cycle of heavy-atom par- 
ameter refinement. Early work on GPD, using co = c~, 
took 80 minutes per cycle to handle more than 10 7 

density points; with o9 determined as above, this 
amount of computation would be sufficient to average 
GPD at 1 A resolution (N= 900 000). Phase determina- 
tion to 2.8 A on TMV is being undertaken (N=212 
000); one cycle will take 100 minutes on the same 
computer, with a maximum core size of 150K words, 
for a noise level of at most 5.5% at high resolution. 

These figures compare favourably with previous work 
in reciprocal space; the calculation of the H-matrix 
for 1200 reflexions of barnase took one hour on the 
same computer (Jack, 1972). 

A possible improvement would be to use a more 
sophisticated interpolation formula, involving a con- 
volution with a truncated transform of the resolu- 
tion sphere. This would decrease the rate of over- 
sampling needed to achieve a given accuracy, and thus 
reduce the size of the sections of the initial e.d. map. 
On the other hand, the interpolation program would 
need to keep more sections in core at a time; its 
logical complexity and the amount of computation 
per point would be increased. The optimization of 
this choice will be very much dependent upon the type 
of computer used. 

In any case, the figures quoted above show that 
the programs as they stand can already cope with the 
largest problems which present data collection tech- 
niques can handle. 

I wish to thank Dr D. M. Blow for frequent dis- 
cussions during the course of this work, and for his 
critical reading of the manuscript. Discussions with 
Dr A. J. Wonacott were particularly helpful during 
program elaboration. Drs P. Argos and T. Steitz made 
some useful remarks on parts of this paper. I am 
grateful to Dr J. White for carrying out the modifica- 
tions of his tracing system needed for the drawing of 
molecular envelopes, and to Dr R. Ladner for the 

/(/ill,, 
.... ," ',f '\ /"'-. 

i ; ~ .. 

Fig. 2. Linear interpolation as a convolution of the sampled 
function with a triangular wedge. - -  O; L,o; 
. . .  copies of the wedge W~,. 

gift of his routine BLOCKBIN. I thank the Inter- 
national Business Machines Corporation for creating 
the IBM 370 and SORT~MERGE, and the D616gation 
G6n6rale ~t la Recherche Scientifique et Technique for 
financial support. 

A P P E N D I X  

E f f e c t s  o f  l i n e a r  i n t e r p o l a t i o n  
o n  c a l c u l a t e d  s t r u c t u r e  f a c t o r s  

This Appendix presupposes some familiarity with ele- 
mentary distribution theory, such as presented in 
Schwartz (1967), and used in (I). 

A. 1. Linear interpolation in one dimension 
Let 0 be any complex valued function of a real 

variable, supposed to have an inverse Fourier trans- 
form F =  .~-[0] (F may be a distribution). 

Linear interpolation of 0 on a grid of size ~ will 
produce a function I~9, which may be written as the 
convolution product:]" 

+oo 
I,~=[0. ~ 0(l,)]* w, 

l ~  - - o o  

where 0(x) denotes a Dirac distribution at point x, 
and W, is the .triangular wedge function of half-width 
~, defined by" 

{ W~(x)=0 if ]x]>~,  
W,(x) = 1 -[x[/o~ if ]xl < c~. 

This representation is made clear by Fig. 2. 
The inverse Fourier transform G~ of I,,0 is readily 

obtained, since 

- 1 /sin 7~(~ 2 

and 
_ +oo 1 +__.~ 5 . 

~-exchanges multiplication and convolution, giving 
the general formula" 

a ~ ( ~ =  \ ~ - - ]  F* -- ,=~_oofi(,/,) , 
i.e. 

[sinzr~]2 +~° ( n )  
G~(~) = \ ~ -  -] ,=Y-ooF ~ -  . (A1) 

This relation between F and G~ is linear. As any 
e.d. map is a linear combination of complex plane 
waves, we can limit ourselves to considering this cor- 
respondence for the one-dimensional wave" 

O(x)=exp [ -  --£--2zci (X-Xo)] = exp (iq)) exp ( 2rCi x) 

t This representation was pointed out to me by Dr R, 
Diamond. 
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with structure factor: 

F =  o~[0] = exp (8o) &(~/~) • 

The transform G~ of I~Q is then easily found to be: 

G,.,(~=exp(i9~) -re2 ,,=-=+~= (l+__~__)z. (A2) 

This expression shows, as illustrated on Fig. 3, that 
the effect of linear interpolation is to multiply the 
initial structure factor by 

sln 

\ 
and to create 'ghost' terms corresponding to the per- 
iodicity of the initial sampling sequence. Fig. 4 shows 
a plot of the attenuation factoi A as a function of the 
ratio c~/2. 

For small enough values of this ratio (c~/2 < 0.3), the 
fall-off of A can be accurately represented by a tem- 
perature factor; equating the second derivatives of 
A(o~x) and exp (-Bx'/4) with respect to x for x - -0  
gives the relation: B~--~Tz2~ 2. 

Note that the sum of the weights of all the peaks is 
preserved since the classical identity: 

1 7t 2 

[see for example Cartan (1961), pp. 152-153] implies 
that 

~ - / i  ] ,__~_~ l + n  = 1 .  (A3) 

Let Q now be a band-limited function, that is, one 
whose inverse Fourier transform F(~) vanishes for 
Ill > 1/A. Then, by equation (A 1), the transform G, of 
I~Q will consist of a 'main band' 

sin rc~ ] 2 
7 ~  / F(~) 

corresponding to n = 0, and an infinity of ghost bands 
(n-C0), so that G, is no longer band-limited (see 
Fig. 5). 

In practice, I~0 will be computed on another grid, 
of size o9, with an origin shifted by e(0 < e < co). The 
result of this computation will be I~o sampled on this 
final grid, i.e. 

+oo 
&~,=I,~. ~ ~,~+~), 

T~ --OO 

whose inverse Fourier transform is" 

1 +oo ] 
H=,o,({) = exp (2zcie{) ~ ~ a<./~) *G,, 

p = - - o o  

i .e. 

dcc~ 

H,J~)=(llo6 E 
I D ~  - - o o  

exp [2rdp(e/og)] G~, @- P)  (A4) 

where G, is given by (A 1). 
H~,o, contains an infinite number of copies of G, 

[G~ v), labelled by index p, with a phase shift 2rcpe/og], 
spaced by 1/o9; each G~ n in turn consists of an infinite 
number of bands, labelled by index n, spaced by 1/e. 
This is shown on Fig. 6. 

X 
(a) 

n=O 

n _--1 
n = - 3  n - - 2  [ 0 n = l  n = 2  n = 3  

tb) 

Fig. 3. Effect of linear interpolation on the spectrum of a 
plane wave. (a) Transform before interpolation. (b) Trans- 
form after interpolation, showing attenuated main peak and 
ghost peaks. 
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Fig. 4. Attenuation of main peak. ~ attenuation function 
[ sin rc~/2,2. 

A(~/2)= \ ~ / ~ - -  ] , - - - equivalent temperature effect 
~2 CZ2 
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Calculation of structure factors from J~,o, to resolu- 
tion A (A) will give H~o~, in the range - ( 1 / A ) < ~ <  
(l/A). If we follow Shannon's sampling criterion for 
0 and make co less than A/2, then 1/co>2/A, and bands 
with same n but different p do not overlap; in particu- 
lar, the main bands of the various G~ p) will be separated. 
But, because I~0 is not band-limited, no value of co 
can prevent the overlap of the main band of each 
G~ p~ with the ghost bands of all the G~ q) with qCp. 
Only if co/e is integral and e = 0  (i.e. if no interpola- 
tion actually takes place) will contributions from main 

(a) 

(b) ¢ 

Fig. 5. Effect of linear interpolation on the spectrum of a band- 
limited function. (a) Transform before interpolation. (b) 
Transform after interpolation, showing fall-off of main 
band, and ghost bands. 

I/1~7 
_2 .7_1 n = o 

/ /  ~ II 
i i  /I I 

p= 2 I I l ia ' t[  II .,//!,, I I I I  
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/ / ] / i 
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/ I I l " ' 

n=O n= l  n =2 
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¢ 

Fig. 6. Decomposition of H,,,~. 

and ghost bands interfere so as to restore the original 
distribution F, as a consequence of the summation 
formula (A3). If co/c~ is integral, while e is not zero but 
is uniformly distributed between 0 and co, random 
phase errors are introduced into the contributions with 
p ¢ 0 .  If co/e is not integral, these contributions are 
out of register. Both effects will be present in a general 
interpolation, so that all the signal lost from the 
main peak will appear as random noise. The amount 
of noise picked up in the range - (l/A) < ~ < (l/A) is 
quite insensitive to the value of co, unless 1/co is large 
enough to separate patterns consisting of a main band 
and some ghost bands. But the elimination of only 
first-order ghosts would require that 1/co be greater 
than 2/A + 1/a, i.e. co > A/[2 +(A/cO] ; this is unreasonably 
fine, and the same noise reduction can be achieved 
more economically by decreasing c~ (see § A.4). 

A.2. Linear interpolation in three dimensions 
When this argument is generalized to three dimen- 

sions, the conclusions are exactly the same as in one 
dimension. The fall-off of calculated structure factors 
Fhkz is of the form: 

I Z ~  J l ~ - ~ U  t sin A ~UTc* ( A 5) 

It is anisotropic, but this can be neglected if the grid 
intervals cz, fl, and 7 are almost equal. The pattern 
of main terms and ghost terms becomes very complex 
if averaging is performed, which justifies the statistical 
treatment given in § A.4. 

A.3. Choice of  the final sampling interval co 
The interval co will need to be slightly larger than 

its minimum value A/2 if envelope constraints are 
used in real space. Truncation of an e.d. map Q by an 
envelope U is equivalent to convoluting its transform 
F with the interference function (1/U)~[Zv], which 
produces some smearing of F. This effect allows some 
degree of phase extension to resolution higher than 
A. To separate such smeared bands, co should be 
determined from 

09 2R 

where R is the radius of a sphere roughly equivalent 
to U, and m is the number of peaks of the interference 
function considered as significant (typically, m = 1). 

A.4. Estimation of  errors 
It follows from §§ A.1 and A.2 that a fraction 1 -  

A(~d~u) of each structure factor Fhkt is converted 
into noise by linear interpolation, where the isotropic 
attenuation factor A is given by: 

/sin n~d~k?] z 

t ! 
For fixed c~, the quantity 1 -A(~dT, kz) varies parabolic- 
ally as dl*kz goes to 0 (see Fig. 4); on the other hand, 
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the moduli ]Fhkz] have an approximately Gaussian 
profile. Therefore, the product IFhk,I [1-A(~d~k,)] in- 
creases with d~kt, so that most of the noise comes from 
high-Iesolution terms; this is enhanced by the fact 
that the number of terms in a given resolution range 
is proportional to (d*) 2. 

The complex pattern of overlap between main and 
ghost bands will result in noise being spread over all 
terms, but we want an upper estimate of the error at 
high. resolution. This will be obtained by considering 
interaction between high-resolution terms only, and 
neglecting the phase incoherence between the various 
ghost bands contributing to the noise. With these 
pessimistic approximations, the noise can be considered 
as having r.m.s, value: 

a =  (IFhkzl[1- A (ctd~kz)])r.m.s.-< (IFl)nr(1 - A) 
hr 

where (IFI)hr is the r.m.s, value of IFhktl at high resolu- 
tion, and A is the value of A(~d~u) at the outer resolu- 
tion limit. 

The relative r.m.s, error at high resolution is thus: 
a / ( I F i ) h r = l - A  for each interpolation. If a local 
symmetry of order n is handled by simple interpola- 
tion (§ 3.2.1), and if n~ interpolated densities are 
needed to compute the average density at each point, 
the mean square error introduced by the linear 
interpolations is a2(n~/n2); this adds to the mean square 
error of the current estimates 6f the structure factors 
caused by incorrect phases. As each cycle multiplies 
all mean square errors by lc= U/v [see (I)], the total 
mean square error introduced by interpolations as the 
process is iterated is at most: 

nl O'2(//i/n 2) (1 + X + tc 2 + . . .  ) = (0"2///2) i~_~/¢ 

The structure factors calculated from the averaged 
map are subsequently profile-corrected by division by 
A(c~d~t), so that the final estimate for the maximum 
r.m.s, error X is given by: 

X _ 1 - A  ]// n~ (A7) 
(IFl)h~ nA 1-~c 

If double interpolation is used, the second interpola- 
tion converts fraction (1 - A )  of the intermediate struc- 
ture factors (already attenuated by A) into noise, 
supposing that the intermediate grid is also of size ~. 
This further noise is not correlated with the first, so 
that only their mean-square values add. Recycling of 
this error results in the same factor (1- tc)  - m  as 
previously. Finally, the total attenuation is A z, so the 
profile correction factor is 1/A 2, giving: 

[ n, ] S=(IFI)h, (1-A)2-n-5- + A 2 ( 1 - A )  2 i / 2  

i.e. 

X _ 1 - A  ] / n l  A2 
( I r l )h ,  A2 l ~ - x V n ~  + " 

I I 

l/1 ~--~K A 2" 

(A8) 
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Applications of the Ewald Method. I. Calculation of Mnltipole Lattice Sums 
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General principles of the Ewald method for evaluating multipole lattice sums are reviewed. The method 
is used to derive an expression for the Lorentz-factor dipole tensor sum in a form convenient for com- 
putation, and comparisons are made with the direct and plane-wise summation methods. Expressions 
are also given for computing quadrupole and octopole sums by the Ewald method. The effect of crystal 
symmetry on lattice sums is outlined; the number of independent sums relating different pairs of equiv- 
alent sublattices does not exceed the total number of such sublattices. Numerical results are given for 
the dipole lattice sums of hydrogen cyanide, benzene, durene, anthracene and pyrene. Quadrupole sums 
are given for cuprous chloride and pyrene, and octupole sums are given for hydrogen cyanide, benzene 
and anthracene. For dipole lattice sums, the Ewald method converges much faster than direct summa- 
tion; for higher multipole sums, the Ewald method has no special advantage in speed, but may prove 
convenient, especially when sums are required for strained lattices. 

Introduction 

Quantitative microscopic interpretation of many phys- 
ical properties of crystals requires a knowledge of 
some type of lattice sum. Calculations of the internal 
energies of crystals involve a wide range of lattice 
sums (charge-charge, dipole-dipole, quadrupole-qua- 
drupole, etc.), depending on the form of the potential 
function assumed (Born & Huang, 1954; Rae, 1969; 
Craig, Mason, Pauling & Santry, 1965; Aung & 
Strauss, 1973). Similarly, the interpretation of elec- 
tronic spectra of crystals requires the evaluation of 
dipole-dipole and higher-order lattice sums (Craig & 
Walmsley, 1963; Decius, 1968; Philpott & Lee, 1973; 
Frech, 1973). The response of crystals to electric 
fields as measured by their dielectric properties 
(Agranovich, 1974; Sinha, Gupta & Price, 1974; 
Bolton, Fawcett & Gurney, 1962; Tessman, Kahn & 
Shockley, 1953; Koikov & Rozova, 1967) or Stark 

* Present address: Department of Chemistry, University of 
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spectroscopy (Hochstrasser, 1973; Dunmur & Munn, 
1975; Chen, Hanson & Fox, 1975) again requires a 
knowledge of appropriate lattice sums for its micro- 
scopic interpretation. The effect of static or dynamic 
strain on all these properties is principally due to 
changes in the lattice sums, which in turn may be 
expressed in terms of higher-order lattice sums. There 
is therefore ample reason for the continuing interest 
in methods for evaluating lattice sums of various 
types (Hove & Krumhansl, 1953; De Wette & Schacher 
1965; Bruesch & Lietz, 1970; Philpott, 1973; Aung & 
Strauss, 1973; Philpott & Mahan, 1973). 

Two basic approaches may be followed in evaluating 
lattice sums: summation of the appropriate function 
over all points of the direct lattice, or summation 
after transformation from the direct to some other 
lattice, usually the reciprocal lattice. There are however 
difficulties with either approach. Values of certain 
direct lattice sums are only conditionally convergent, 
and it becomes necessary to define a summation shape 
outside which all lattice points are excluded (Philpott & 
Lee, 1973; Burrows & Kettle, 1975). This problem 
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